跳至产品信息
1 / 1
Athena Nutrients US flag

Official Reseller

Provision Gardens is an official reseller of this brand.

Our inventory is sourced directly from the manufacturer and/or authorized distribution partners. We do not sell used items or unverified/old stock. This helps ensure product authenticity, freshness, and the high standard you expect.

Athena Nutrients Pro Fade - 5 加仑

Athena Nutrients Pro Fade - 5 加仑

常规价格 $227.50
常规价格 促销价 $227.50
结账时计算的运费

OTHER AVAILABLE SIZES / MODELS:

门店库存
Winnipeg, Manitoba
可用的
Barrie, Ontario
不可用
Newmarket, Ontario
不可用
Pickering, Ontario
不可用

您选择的取货地点缺货?我们会自动从其他地点调货,确保您选择的取货地点有货。(仅限安大略省)

Province:
Choose your province
Order Within:
Estimated Delivery:
Free Shipping (Canada):
Free Shipping (Ontario):
数量
符合免运费促销条件

Description

Athena Nutrients Pro Fade 是一款不含氮的收尾液,一种用于花期末期的液态矿物肥料,可促进作物成熟,并使花朵更加洁净。这款不含氮的收尾增效剂专为关键的成熟期而设计,许多种植者希望在这个阶段减少氮肥用量,同时又不让植物缺乏必要的收尾营养。

Fade 的设计理念围绕着一个简单的后期开花目标:过量的氮肥会延缓花朵成熟,而在花期末期去除氮肥则有助于花朵顺利成熟。Fade 专注于在关键的成熟阶段提供无氮支持,这与那些将花期末期视为一个独立阶段并希望花朵更清晰地过渡到成熟期的种植者的需求不谋而合。

与传统的冲洗方式会彻底清除所有养分不同,这款冲洗产品旨在作物成熟期保留关键的“非移动性营养元素”。Athena公司表示,Fade能够提供最佳水平的钙和微量元素,帮助植物在关键的成熟阶段避免营养匮乏。实际上,这意味着您可以优先促进作物成熟,同时确保作物在生长后期获得所需的钙和微量元素。

作为一种液态矿物肥料,Fade 非常适合那些重视花后期操作流程一致性和清洁性的种植者。它专为花期末期的无氮冲洗而设计,产品作用明确:在不依赖氮肥的情况下加速植物成熟,同时维持钙和微量元素的供应,以支持植物在成熟过程中的新陈代谢。

如果您想要更有针对性地控制晚花期,Athena Nutrients Pro Fade 非常适合那些想要一种不含氮的收尾增强剂的种植者,它可以在关键的成熟阶段支持花朵成熟、作物成熟和花朵质量,而不会使收尾变成一个复杂的程序。

How To Use

How to Use Athena Nutrients Pro Fade - 5 加仑

Step-by-step mixing and feeding instructions for Athena Nutrients Pro Fade - 5 加仑.

Mixing & preparation

Fill your reservoir or watering container with clean, room-temperature water first. Shake the bottle of Athena Nutrients Pro Fade - 5 加仑 well before every use. Using the feeding schedule below, measure the recommended dose and add it directly to the water while stirring. Allow the solution to mix fully before adding any other fertilizers, additives, or supplements.

Always add nutrients to water — not the other way around. Mix thoroughly between products to ensure an even, stable nutrient solution.

Week-by-week feeding schedule

Vegetative stage — Fade

  • Week 1: do not use this product during this week of vegetative growth.
  • Week 2: do not use this product during this week of vegetative growth.
  • Week 3: do not use this product during this week of vegetative growth.
  • Week 4: do not use this product during this week of vegetative growth.

Flowering stage — Fade

  • Week 1: do not use this product during this week of flowering.
  • Week 2: do not use this product during this week of flowering.
  • Week 3: do not use this product during this week of flowering.
  • Week 4: do not use this product during this week of flowering.
  • Week 5: do not use this product during this week of flowering.
  • Week 6: do not use this product during this week of flowering.
  • Week 7: do not use this product during this week of flowering.
  • Week 8: mix 3.2 ml per litre of water or nutrient solution.
  • Week 9: mix 3.2 ml per litre of water or nutrient solution.

Tips for best results

  • Maintain pH and EC/ppm within the range recommended for your growing medium and crop.
  • Use fresh nutrient solution whenever possible and avoid leaving mixed solution stagnant for long periods.
  • Store nutrients in a cool, dark place away from direct sunlight and extreme temperatures.
  • Keep bottles tightly sealed when not in use to reduce air exposure and preserve product quality.
  • Use clean measuring tools and regularly rinse or clean your reservoir, lines, and irrigation equipment.

Common mistakes to avoid

  • Do not mix different nutrients or additives together in concentrated form before adding them to water.
  • Do not exceed the recommended dosage unless you are following a tested, crop-specific feeding plan.
  • Do not skip pH or EC/ppm checks when growing in hydroponic or soilless systems.
  • Do not allow the nutrient solution to freeze or overheat, as this can damage the formulation.
  • Do not ignore the directions on the product label for your specific crop, growth stage, and system type.

Warnings & Safety

Warning – Important Safety Information

This product may cause mild skin irritation and eye irritation. Avoid unnecessary contact with skin, eyes, and clothing. Use only as directed.

General safety precautions

Read and follow all instructions on the product label and any accompanying documentation before use. Keep out of reach of children and pets. Do not ingest. Avoid breathing vapours, mist, or dust that may be generated during handling or use.

Wear appropriate personal protective equipment (PPE), such as protective gloves, long sleeves, long pants and closed-toe footwear. When there is a risk of splashing or airborne particles, use safety glasses or other suitable eye and face protection.

First aid – skin contact

IF ON SKIN OR HAIR: Remove contaminated clothing immediately. Rinse skin with clean water for several minutes, then wash with mild soap and water. If irritation or redness develops and persists, seek medical attention. Wash contaminated clothing before reuse.

First aid – eye contact

IF IN EYES: Rinse cautiously with clean water for several minutes, keeping eyelids open. Remove contact lenses if present and easy to do. Continue rinsing. If irritation persists, obtain medical advice.

First aid – ingestion and inhalation

IF SWALLOWED: Rinse mouth thoroughly with water. Do not induce vomiting unless instructed by a medical professional. Seek medical attention if you feel unwell.

IF INHALED: Move the person to fresh air and keep them comfortable for breathing. If coughing, breathing difficulty, dizziness or other symptoms occur, seek medical assistance.

Storage and handling

Store this product in its original closed container, in a cool, dry and well-ventilated area. Protect from extreme temperatures and direct sunlight. Keep container tightly sealed when not in use.

Avoid release to drains, natural waterways or outdoor soil. Dispose of unused product and empty containers in accordance with local regulations and the directions on the label.

Important: If medical advice is needed, keep the product label or container available. Always follow the specific instructions and safety recommendations provided by the manufacturer. This safety notice is intended as general guidance and does not replace official label directions or documentation.

Guaranteed Minimum Analysis

Frequently Asked Questions

What makes boric acid important for plants compared to other micronutrients?

Boric acid supplies boron, which plants need in extremely small amounts to build healthy new growth and support flowering and fruit development, but the safe range is very narrow. It’s unique because deficiency shows up first in the newest tissues while excess often burns older leaf edges, so accurate diagnosis and tiny, careful corrections matter more than with most nutrients.

Why is boron (B) essential for strong plant development, and what makes it different from other micronutrients?

Boron is essential because it stabilizes cell walls, supports root and shoot growth, and regulates sugar movement throughout the plant. What makes boron unique is its limited mobility and extremely narrow range between deficiency and excess, which causes new growth to show symptoms rapidly when levels fall out of balance.

Why is calcium important for plant growth?

Calcium is important because it builds and stabilizes plant cells as they form, acting as the structural support that keeps new growth strong and functional. Unlike other nutrients that drive color or speed of growth, calcium’s role is unique because it controls cell wall strength and membrane stability, making it essential for healthy roots, shoots, and long-term plant resilience rather than quick visual results.

What makes calcium chloride different from other calcium sources for plants?

Calcium chloride is different because it dissolves extremely fast and can deliver calcium quickly to new growth, which is where calcium problems show up first. It’s important because calcium supports strong new tissue and stable growth tips, but it’s unique because it also adds chloride and has higher salt strength, so it must be used carefully to avoid leaf burn or root-zone salt stress.

Why is chelated copper (Cu) important for plant growth, and what makes it unique from other micronutrients?

Chelated copper is important because it supports key enzyme systems that drive energy flow, strong tissue formation, and healthy new growth, while chelation keeps copper available and stable in the root zone. It’s unique because plants need it in extremely small amounts and it can become unavailable or toxic more easily than many other micronutrients, so chelated forms help deliver precise, predictable copper without big swings.

Why is chelated iron important for plants, and what makes it different from other iron sources?

Chelated iron is important because it keeps iron usable for plants even when growing conditions would normally lock iron out, helping prevent the classic yellow-new-leaf symptom caused by low chlorophyll production. It is unique from other iron sources because the chelation protects iron from becoming insoluble, making it a more reliable way to correct iron-related chlorosis when regular iron can fail.

Why is chelated manganese (Mn) important for plant growth?

Chelated manganese is important because it keeps manganese available for photosynthesis and enzyme activity even when pH or water chemistry would normally lock it out, and it’s unique from similar micronutrients because it strongly supports the plant’s energy-processing systems that drive healthy, resilient new growth.

Why is chelated zinc (Zn) important for plants?

Chelated zinc is important because it keeps zinc available for uptake even when pH or root-zone conditions would normally lock zinc out, helping plants form normal-sized, healthy new growth—something that makes zinc uniquely different from many other nutrients that mainly affect older leaves or simple leaf color changes.

Why is chlorine (Cl) important for plants?

Chlorine, mainly as chloride (Cl⁻), helps plants control water balance and stomata function, supporting steady leaf pressure and efficient photosynthesis, and it’s unique from many nutrients because deficiency is rare while excess buildup is a more common risk that shows up as leaf-edge burn and salt stress.

Why is copper EDTA used in plant nutrition instead of plain copper?

Copper EDTA helps keep copper dissolved and available to roots longer, so plants can absorb it more consistently when copper would otherwise tie up in the growing medium. It’s important because copper supports enzyme activity and healthy new growth, and it’s unique because the chelate improves predictability while allowing very small, controlled copper dosing.

Why is molybdenum (Mo) important for plant growth?

Molybdenum is important because it helps plants convert nitrogen into usable building blocks for chlorophyll and growth, and it’s unique from many nutrients because it mainly supports enzyme-driven “nutrient use” rather than directly building plant tissue.

What does Iron DTPA do for pale new growth?

Iron DTPA keeps iron dissolved and available in the root zone so plants can build chlorophyll properly in new leaves, which is why it’s so effective for yellowing at the growing tips. It’s unique because the DTPA chelate protects iron from becoming tied up as quickly as many non-chelated sources, making it a dependable fix when pH drift or water alkalinity would otherwise cause iron lockout.

Why is Iron EDDHA better for plants growing in high-pH soil?

Iron EDDHA is important because it keeps iron usable when alkaline conditions would normally lock iron away, helping new leaves stay green and growth stay strong. It’s unique because it remains stable and plant-available at higher pH where many other iron forms quickly stop working.

What makes iron EDTA effective for fixing pale new leaves?

Iron EDTA keeps iron dissolved and available long enough for roots to absorb it, which is why it can quickly improve new growth color when iron is tied up in the root zone. It’s unique because the EDTA chelate balances stability and accessibility, making iron more reliably usable in mildly acidic to near-neutral conditions compared to many non-chelated iron forms.

What makes manganese EDTA different from other manganese sources?

Manganese EDTA is unique because the EDTA chelate keeps manganese stable and more available during delivery, helping plants absorb it more reliably when manganese would otherwise lock up. This matters because manganese drives key enzyme functions tied to photosynthesis and healthy new growth, so consistent availability can prevent pale, chlorotic young leaves and stalled vigor.

What does sodium molybdate do for plants?

Sodium molybdate supplies molybdenum, a trace micronutrient that helps plants convert nitrate nitrogen into usable building material, so growth and green color stay steady; it’s unique because it works as a tiny-dose “nitrogen unlocker” rather than a bulk nutrient.

What makes zinc EDTA better for preventing zinc lockout?

Zinc EDTA is important because it keeps zinc available in the root zone when pH or water chemistry would normally tie zinc up, helping new growth develop normally before deficiency symptoms get worse. It’s unique from other zinc forms because the EDTA chelate shields zinc in solution, making delivery more consistent when conditions are not ideal.

Safety & Technical Documents

查看完整详细信息
营养饲料表

Vegetative — Pro Fade

Flowering — Pro Fade

产品对比